Espaces vectoriels

Un espace vectoriel (E.V.) est un ensemble V/, donc les objets sont des vecteurs, pour lequel

il est possible de définir deux opérations :
O Addition : V+we V, VW, we V
@ Multiplication scalaire : \- Ve V, Vve V, VAeR.

De plus, ces opérations doivent satisfaire les 8 propriétés EV :

EV 1 - Commutativité U+v=v+d

EV 2 - Associativité 1 (T+V)+w=0+ (V+ w)
EV 3 - Associativité 2 Apv) = (Ap)v

EV 4 - Distributivité 1 MO+ V) =+ \w

EV 5 - Distributivité 2 A+ p)V = AV + pv

EV 6 - Eléement neutre pour - 1-vV =V

EV 7 - Elément neutre pour + 0y +V =V
EV 8 - Inverse pour + V+(—V) =0y



Exemples d’espaces vectoriels

Vi 0
© Espaces euclidiens : R" = { vV = | : vy, vpER G Ope = 0=
Vi 0
a ain 0 0
@ Matrices : M ,xp = : : cajeRY, Opxn=
ami  --- 3mn 0O ... 0

© Polyndmes : P,(R) = {p(t) = ap + a1t + ast?> + -+ + a,t" : a; € R}

Elément neutre : polynédme nul p(t) = 0.

@ Fonctions réelles : F(R) = {f : R - R}

Elément neutre : fonction identiquement nulle f(t) = 0.



Des notions vue dans R" se transposent identiquement dans des espaces vectoriels abstraits :

Soit V un E.V. et une famille de vecteurs vq,... v, € V.
@ Un vecteur vV € V est une combinaison linéaire (C.L.) de {vi,... vy} s'il existe
AL, ... Ak ER tels que V= A\ v + ... MgV
@ On note Span{v, ...V} lI'ensemble des C.L. de {v1,... v}.

© La famille {¥, ...V} est linéairement indépendante ou libre si aucun des V; est une

C.L. des autres. Autrement, les vecteurs sont liés.

Théoréme
Une famille {v},..., vk} c V est linéairement indépendante si et seulement si

M+ -+ Mk =0y = X\ =0 VlI<i<k




Sous-espaces vectoriels

Définition

Soit V un E.V. et W < V. On dit que W est un sous-espace vectoriel
(S-.E.V.) si pour tout V,we W, A eR

© W est non-vide
© Stabilité de lI'addition : v+ we W
© Stabilité de la multiplication : A-ve W

Caractérisation simplifiée
W est un S.E.V. si et seulement si, pour tout v,we W, A e R

@ Elément neutre: 0y, e W

@ Stabilité des combinaisons linéaires : \ - v+ we W




Sous-espaces vectoriels
{Oy} est un SEV

Les 3 types de SEV de V = R? sont

e {(0,0)} o les droites passant par e R? lui-méme
I'origine
Les polynémes sont des SEV des fonctions réelles, et Po c Py c --- c P, c F. J

Théoréme

Soit V un E.V. et vecteurs v4,...,V, € V. Alors Span{vi,...,V,} est un S.E.V. de V.

On dit que {4, ..., V,} engendre (ou est une famille génératrice du) SEV. )




Applications linéaires

Definitions

Soient V, W deux espaces vectoriel. Une fonction T : V — W est une application linéaire si
TV +uw) =AT(V) +uT(w), VV,weV, \,ueR.

En particulier, T(0,) = Ow .

Le noyau de T est le sous-ensemble Ker(T) = {vVe V: T(V) =0w} c V. J
L' image de T est le sous-ensemble Im(T) ={T (V) e W:ve V} c W. )
T est injectif-vesi T(V) =T(w) = V=w. J

T est surjectif-ve si Vbe W, 3ve V tel que T(V) = b. J




Applications linéaires

Théoréme

Soit T : V — W une application linéaire. Alors
T injectif-ve <  Ker(T) = {0y}.

T surjectif-ve < Im(T) = W.

A\

Cas des applications matricielles

Soit T : R" — R™ une application linéaire et A € M,,«, sa matrice canonique. Alors on note
Im(A) = Im(T) = {AX: X e R"}, Ker(A) = Ker(A) = {X : AX = Ogn}.

L'image de A est engendré par les colonnes linéairement indépendantes de A.

Le noyau de A est engendré par les solutions du systéme homogeéne AX = 0.




Bases d'un espace vectoriel

Soit V un espace vectoriel. Une famille B = {v4,-V,,} est une base de V si
@ B est libre / linéairement indépendante.

@ Span{v,-v,} = V (famille génératrice).

Le nombre n de vecteurs dans la base est la dimension de V. On la note Dim(V/) = n.

~
Pas noté au tableau!

.

Exemples - Bases canoniques
Q R": By = {é1,...€,}, Dim(R") =n
Q P,: Bap={1,t,t?,...,t"}, Dim(P,) =n+1
Q@ Mpxn:Ban={Ej:1<i<m, 1<j<n}

ou Ej est la matrice m x n avec un 1 dans la i-éme ligne et j-éme colonne.




Coordonnées

Théoréme + définition

Soit B = {51, ... by} une base de V. Alors pour tout vV € V, il existe une unique combinaison
linéaire dans B
A1
V=X 1+"'+/\,—,E,-,€V = [‘7]8: e R".
An

On appelle coordonnées de v dans B le vecteur [V]z.

Elles établissent un lien direct entre un EV de dimension n et R"!

Formule de I'inverse

Si V= R", alors

A\

A\




Matrice de changement de base

Définition
Soient B = {by,...b,} et C = {&,...&,} deux bases de V. On appelle matrice de

changement de base de B vers C la matrice P¢p telle que

[V]C = PCB[‘?]B, VveV.

Formule de I'inverse




Matrice d'une application linéaire

Définition

Soient T : V — W une application liéaire, et des bases B = {51, e En} c Vet
C ={&,...Cn} = W On appelle matrice (représentative) de T dans les bases B et C la
matrice M telle que

[T(W]e = M[V]s, VveV.

Formules des coordonnées




Dimension d'un EV

Théoréme (généralités)

Soit V' un espace vectoriel et B une base de V avec n éléments. Alors

@ toute base de V contient aussi exactement n éléments ;
Q@ une famille de k éléments de V avec k > n est nécessairement liée ;

© si une famille de n élément est libre, alors elle forme une base de V;

@ si une famille de n éléments engendre V, alors elle forme une base de V.

Théoréme (sous-espaces vectoriels)

Soit V un espace vectoriel et W < V un sous-espace vectoriel. Alors
© Dim(W) < Dim(V) avec égalité si et seulement si W = V/;
@ Dim(W)=0 < W ={0v};

© Toute base de W peut étre completée en une base de V.




Rang, noyau et image

Soit une matrice A€ My« ,. Alors le rang de A est défini par

Rg(A) = Dim(Im(A)) = nombre de colonnes-pivots de A.

Dim(Ker(A)) = n— Rg(A) = nombre de colonnes pas pivots de A.

Equivalence

A€ M,y est inversible = Rg(A) = n.




Rang, noyau et image

Application linéaire

Soit T : V. — W une application linéaire. Alors le rang de T est défini par

Rg(T) = Dim(Im(T)).

Théoréme du rang (applications linéaires)

Dim(Ker(T)) + Rg(T) = Dim(V).

V.
e T surjective = Im(T) =W < Rg(T) = Dim(W);
o T injective < Ker(T) = {Ov} = Rg(T) = Dim(V);
e T surjective = Rg(T) = Dim(V) = Dim(W).




