
Espaces vectoriels

Un espace vectoriel (E.V.) est un ensemble V , donc les objets sont des vecteurs, pour lequel

il est possible de dé�nir deux opérations :

1 Addition : v⃗ � w⃗ P V , @v⃗ , w⃗ P V

2 Multiplication scalaire : λ � v⃗ P V , @v⃗ P V , @λ P R.

De plus, ces opérations doivent satisfaire les 8 propriétés EV :

EV 1 - Commutativité u⃗ � v⃗ � v⃗ � u⃗

EV 2 - Associativité 1 pu⃗ � v⃗q � w⃗ � u⃗ � pv⃗ � w⃗q

EV 3 - Associativité 2 λpµv⃗q � pλµqv⃗

EV 4 - Distributivité 1 λpu⃗ � v⃗q � λv⃗ � λw⃗

EV 5 - Distributivité 2 pλ� µqv⃗ � λv⃗ � µv⃗

EV 6 - Elément neutre pour � 1 � v⃗ � v⃗

EV 7 - Elément neutre pour � 0V � v⃗ � v⃗

EV 8 - Inverse pour � v⃗ � p�v⃗q � 0V



Exemples d'espaces vectoriels
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3 Polynômes : PnpRq � tpptq � a0 � a1t � a2t
2 � � � � � ant

n : ai P Ru
Elément neutre : polynôme nul pptq � 0.

4 Fonctions réelles : F pRq � tf : RÑ Ru
Elément neutre : fonction identiquement nulle f ptq � 0.



Dé�nitions

Des notions vue dans Rn se transposent identiquement dans des espaces vectoriels abstraits :

Soit V un E.V. et une famille de vecteurs v⃗1, . . . v⃗k P V .

1 Un vecteur v⃗ P V est une combinaison linéaire (C.L.) de tv1, . . . vku s'il existe

λ1, . . . λk P R tels que v⃗ � λ1v⃗1 � . . . λk v⃗k .

2 On note Spantv⃗1, . . . v⃗ku l'ensemble des C .L. de tv1, . . . vku.

3 La famille tv⃗1, . . . v⃗ku est linéairement indépendante ou libre si aucun des v⃗i est une

C.L. des autres. Autrement, les vecteurs sont liés.

Théorème

Une famille tv⃗1, . . . , v⃗ku � V est linéairement indépendante si et seulement si

λ1v⃗1 � � � � � λk v⃗k � 0V ùñ λi � 0, @1 ¤ i ¤ k.



Sous-espaces vectoriels

Dé�nition

Soit V un E.V. et W � V . On dit que W est un sous-espace vectoriel

(S.E.V.) si pour tout v⃗ , w⃗ P W , λ P R
1 W est non-vide

2 Stabilité de l'addition : v⃗ � w⃗ P W

3 Stabilité de la multiplication : λ � v⃗ P W

Caractérisation simpli�ée

W est un S.E.V. si et seulement si, pour tout v⃗ , w⃗ P W , λ P R
1' Elément neutre : 0V P W

2' Stabilité des combinaisons linéaires : λ � v⃗ � w⃗ P W



Sous-espaces vectoriels

Exemples

t0V u est un SEV

Les 3 types de SEV de V � R2 sont

tp0, 0qu les droites passant par

l'origine

R2 lui-même

Les polynômes sont des SEV des fonctions réelles, et P0 � P1 � � � � � Pn � F.

Théorème

Soit V un E.V. et vecteurs v⃗1, . . . , v⃗n P V . Alors Spantv⃗1, . . . , v⃗nu est un S.E.V. de V .

On dit que tv⃗1, . . . , v⃗nu engendre (ou est une famille génératrice du) SEV.



Applications linéaires

De�nitions

Soient V ,W deux espaces vectoriel. Une fonction T : V ÑW est une application linéaire si

T pλv⃗ � µw⃗q � λT pv⃗q � µT pw⃗q, @v⃗ , w⃗ P V , λ, µ P R.

En particulier, T p0v q � 0W .

Le noyau de T est le sous-ensemble KerpT q � tv⃗ P V : T pv⃗q � 0W u � V .

L' image de T est le sous-ensemble ImpT q � tT pv⃗q PW : v⃗ P V u �W .

T est injectif�ve si T pv⃗q � T pw⃗q ñ v⃗ � w⃗ .

T est surjectif�ve si @b⃗ PW , Dv⃗ P V tel que T pv⃗q � b⃗.



Applications linéaires

Théorème

Soit T : V ÑW une application linéaire. Alors

T injectif � ve ô KerpT q � t0V u.

T surjectif � ve ô ImpT q �W .

Cas des applications matricielles

Soit T : Rn Ñ Rm une application linéaire et A P Mm�n sa matrice canonique. Alors on note

ImpAq � ImpT q � tAx⃗ : x⃗ P Rnu, KerpAq � KerpAq � tx⃗ : Ax⃗ � 0Rmu.

L'image de A est engendré par les colonnes linéairement indépendantes de A.

Le noyau de A est engendré par les solutions du système homogène Ax⃗ � 0⃗.



Bases d'un espace vectoriel

Dé�nition

Soit V un espace vectoriel. Une famille B � tv⃗1, �v⃗nu est une base de V si

1 B est libre / linéairement indépendante.

2 Spantv⃗1, �v⃗nu � V (famille génératrice).

Le nombre n de vecteurs dans la base est la dimension de V . On la note DimpV q � n.loooooooooooooomoooooooooooooon
Pas noté au tableau !

Exemples - Bases canoniques

1 Rn : Bcan � te⃗1, . . . e⃗nu, DimpRnq � n

2 Pn : Bcan � t1, t, t2, . . . , tnu, DimpPnq � n � 1

3 Mm�n : Bcan � tEij : 1 ¤ i ¤ m, 1 ¤ j ¤ nu

où Eij est la matrice m � n avec un 1 dans la i-ème ligne et j-ème colonne.



Coordonnées

Théorème + dé�nition

Soit B � tb⃗1, . . . b⃗nu une base de V . Alors pour tout v⃗ P V , il existe une unique combinaison

linéaire dans B

v⃗ � λ1b⃗1 � � � � � λnb⃗n P V ô rv⃗ sB �

�
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P Rn.

On appelle coordonnées de v⃗ dans B le vecteur rv⃗ sB.

Elles établissent un lien direct entre un EV de dimension n et Rn !

Formule de l'inverse

Si V⃗ � Rn, alors

rv⃗ sB �
�
b⃗1 . . . b⃗n

	
�1

v⃗ .



Matrice de changement de base

Dé�nition

Soient B � tb⃗1, . . . b⃗nu et C � tc⃗1, . . . c⃗nu deux bases de V . On appelle matrice de

changement de base de B vers C la matrice PCB telle que

rv sC � PCBrv⃗ sB, @v⃗ P V .

Formule de l'inverse

PCB �
�
c⃗1 . . . c⃗n

	
�1 �

b⃗1 . . . b⃗n

	
� pCq�1pBq

Formules des coordonnées

PCB �
�
rb⃗1sC . . . rb⃗nsC

	
� rBsC



Matrice d'une application linéaire

Dé�nition

Soient T : V ÑW une application liéaire, et des bases B � tb⃗1, . . . b⃗nu � V et

C � tc⃗1, . . . c⃗mu �W On appelle matrice (représentative) de T dans les bases B et C la

matrice M telle que

rT pvqsC � Mrv⃗ sB, @v⃗ P V .

Formules des coordonnées

M �
�
rT⃗ pb1qsC . . . rT⃗ pbnqsC

	
� rT pBqsC



Dimension d'un EV

Théorème (généralités)

Soit V un espace vectoriel et B une base de V avec n éléments. Alors

1 toute base de V contient aussi exactement n éléments ;

2 une famille de k éléments de V avec k ¡ n est nécessairement liée ;

3 si une famille de n élément est libre, alors elle forme une base de V ;

4 si une famille de n éléments engendre V , alors elle forme une base de V .

Théorème (sous-espaces vectoriels)

Soit V un espace vectoriel et W � V un sous-espace vectoriel. Alors

1 DimpW q ¤ DimpV q avec égalité si et seulement si W � V ;

2 DimpW q � 0 ô W � t0V u ;

3 Toute base de W peut être completée en une base de V .



Rang, noyau et image

Matrices

Soit une matrice A P Mm�n. Alors le rang de A est dé�ni par

RgpAq � DimpImpAqq � nombre de colonnes-pivots de A.

Théorème du rang (matrices)

DimpKerpAqq � n � RgpAq � nombre de colonnes pas pivots de A.

Equivalence

A P Mn�n est inversible ô RgpAq � n.



Rang, noyau et image

Application linéaire

Soit T : V ÑW une application linéaire. Alors le rang de T est dé�ni par

RgpT q � DimpImpT qq.

Théorème du rang (applications linéaires)

DimpKerpT qq � RgpT q � DimpV q.

Equivalence

T surjective ô ImpT q �W ô RgpT q � DimpW q ;

T injective ô KerpT q � t0V u ô RgpT q � DimpV q ;

T surjective ô RgpT q � DimpV q � DimpW q.


